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Normal theory procedures for calculating upper con®dence limits (UCL) on the risk function for

continuous responses work well when the data come from a normal distribution. However, if the data

come from an alternative distribution, the application of the normal theory procedures may lead

serious over- or under-coverage depending upon the alternative distribution. In this paper we conduct

simulation studies to investigate the sensitivity of three normal theory UCL procedures to departures

from normality. Data from several gamma, reciprocal gamma, and lognormal distributions are

considered. The normal theory procedures are applied to both the raw data and the log-transformed

data.
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1. Introduction

Data analysis for the benchmark dose (BMD) with continuous responses (Crump, 1995;

Chen and Gaylor, 1992; Kimmel and Gaylor, 1988) has generally been based on the

normal model (Chen and Gaylor, 1992; Kodell and West, 1993a; Kodell and West, 1993a;

Banga, Patil and Taillie, 1999a). One-sided con®dence limits are usually employed as

conservative point estimates. An upper con®dence limit (UCL) on the risk function is of

particular interest. The normal theory is appealing in this context but applying it where the

data deviate from normality could lead to erroneous conclusions in the form of excessively

stringent (and expensive) regulatory standards or excessively loose (and unsafe) standards.

The effect of skewness on coverage probability is of particular concern.
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In order to study this issue, we consider the following two scenarios for constructing

UCLs on the risk function. First, a normal based analysis is performed when the data

actually follow either a gamma, a reciprocal gamma, or a lognormal distribution. In the

second scenario, a lognormal analysis is conducted when the data actually come from

either a gamma or a reciprocal gamma distribution. Our simulation study reveals a

consistent pattern of overcoverage when the data are generated from the gamma model

and of undercoverage when the data are generated from the reciprocal gamma or (®rst

scenario only) from the lognormal model. Depending upon the model parameters, the

under- or over-coverage can be quite severe and become progressively worse as the the

sample size increases. Likelihood-based UCL methods developed for the gamma and

reciprocal gamma distributions (Banga, Patil and Taillie, 1999c) provide a basis for doing

the data analysis under some alternative (nonnormal) model speci®cations.

2. Dose-response models for continuous responses

Consider a dose-response experiment in which the response Y follows a continuous

response distribution, F�y; w��, some of whose parameters may vary with dose level d. A

dose-response model for continuous responses thus involves two components: (i) the

parametric family of response distributions F�y; w��, and (ii) a ``link'' function specifying

how w� changes with the dose level. This latter speci®cation typically involves unknown

parameters h for example, the components of h might be the coef®cients in a linear model.

The full set of unknown parameters, denoted by w, consists of h and any components of w�

that are not determined by h and d. Since there is a well-de®ned mapping �w; d�°w�, the

response distribution is indexed by �w; d� and we write F�y; w; d�.
Risk analysis is brought into the picture by supposing that there is an ``abnormal'' point t

for which the outcome Y � t indicates an adverse response. The risk function is de®ned as

R�d�:R�d; w� � Pr�Y � tjd�:
Here, we have taken the direction of adversity to the left; there is a parallel theory when the

direction of adversity is to the right.

If t were known numerically, then the observed responses could be dichotomized and

the risk function estimated using quantal methods (although there is the question of

whether statistical ef®ciency could be improved by using the continuous response

directly). However, in this paper we examine the case in which no prior numerical value is

available for t. Instead, t is de®ned as a quantile of the control distribution so that t is itself

an unknown parameter. Speci®cally, the investigator ®xes a risk level a, with 05a51,

and the abnormal point t � ta is then determined by the requirement that

a � Pr�Y � tjd � 0�:
Observe that t depends upon the unknown parameters w. On the other hand, the

background risk, R�0; w�, equals a and is therefore known.

Our interest is in estimating the risk function R�d; w� and more speci®cally in obtaining

a ( pointwise) upper con®dence curve for that risk function.

Suppose that there are g experimental doses, 0 � d15d25 � � �5dg, with ni

observations, Yi1; Yi2; . . . ; Yini
, at dose level di. With the usual assumption of independent

responses, the likelihood function is
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L�w� �
Yg

i� 1

Yni

j� 1

f �yij; w; di�;

where f �y; w; d� is the density corresponding to the response distribution F�y; w; d�. Banga

et al. (1999a) describe a computationally convenient form of the pro®le likelihood method

(called the likelihood contour method) for obtaining asymptotic UCLs on the risk function.

Fairly explicit solutions are available for normally distributed responses with a linear link

function. This is described in the next section.

3. Homoscedastic normal theory model for continuous
responses

Suppose that responses are normally distributed with a constant (but unknown) variance

and with a mean whose dependence on the dose is described by a linear model. Using the

notation of the previous section, let

Yij*N�m�di�; s2�; i � 1; . . . ; g; j � 1; . . . ; ni

with

m�d� � x0h;

where x�d� is a p-dimensional vector whose components are known and h is a p-

dimensional vector whose components are unknown. The unknown parameters are

w � �s2; y0; . . . ; ypÿ1�. The total sample size is

N �
Xg

i� 1

ni;

where g is the number of experimental dose groups and ni is the sample size for the ith
group.

Speci®c examples of link functions include the straight line model with

m�d� � y0 � y1d;

and the quadratic model with

m�d� � y0 � y1d � y2d2:

The quadratic model (Kodell and West, 1993a; Kodell and West, 1993b) allows the risk

function to be decreasing for small dose levels in case the chemical under study is

bene®cial for small exposures.

Let Y�d� be a hypothetical response at an arbitrary dose level d. Under the normal model

Y�d�*N�m�d�; s2� and m�d� � x0h;

so that the risk function becomes

R�d� � Pr�Y�d� � tjd� � F
tÿ m�d�

s

� �
:
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The abnormal t point is de®ned by

a � R�0� � F
tÿ m�0�

s

� �
;

where a is speci®ed by the investigator. The total risk can then be written as

R�d� � F za �
m�0� ÿ m�d�

s

� �
� F za �

a0h
s

� �
;

where

za � Uÿ 1�a� and a � x�0� ÿ x�d�:
We now outline three procedures for calculating an asymptotic UCL for R�d�.

3.1 The MLE approach: MLE

A standard method for calculating an asymptotic UCL for a scalar parameter uses

asymptotic normality of the maximum likelihood estimator, and the so-called d method to

obtain an approximate standard error. For the homoscedastic normal model described

above, this method yields an asymptotic 100�1ÿ ac� percent UCL on R�d� given by

F za � ĵ� z1ÿ ac

�������������������������
o2 � ĵ2=2N

p� �
;

where

ĵ � a0ĥ
ŝ
;

with ĥ and ŝ being the MLE estimates of h and s, respectively. Also, o2 � a0�X0X�ÿ 1
a,

and z1ÿ ac
is the 100�1ÿ ac�th percentile of the standard normal distribution.

3.2 Likelihood ratio-based approach: LREL and LRAL

This approach uses the asymptotic w2 distribution of the likelihood ratio and the duality

between con®dence intervals and hypothesis testing to construct UCLs. Banga et al.
(1999) formulate this as a constrained optimization problem which they solve using the

Lagrange multiplier method. The exact solution to the Lagrange equations yields an

asymptotic 100�1ÿ ac� percent UCL for R�d� given by

F za �
2ĵ� g�o2

2
������������������������
1ÿ g�ĵ=2N

p !
;

where g� is the larger root of the function
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G�g� � 1ÿ ĵg
2N

� �
log 1ÿ ĵg

2N

� �
ÿ 1� z2

1ÿac

N

 !
1ÿ ĵg

2N

� �
� g2o2

4N
� 1:

This is referred to as the LREL procedure.

When the Lagrange equations are replaced by the lowest order terms in their asymptotic

expansions, the resulting equations can be solved to yield another (less accurate)

asymptotic 100�1ÿ ac� percent UCL for R�d� given by

F za �
ĵ

�������������������������
o2 � ĵ2=2N

p � z1ÿ ac
o2�������������������������

o2 � ĵ2=2N
p ÿ z1ÿ ac

ĵ=2N

 !
:

This is referred to as the LRAL approach.

4. Sensitivity scenario 1 (untransformed data)

For this scenario, we generate data as either gamma, reciprocal gamma, or lognormal but

conduct the risk analysis as though the response distribution was actually normal as

described in the previous section. The simulation studies were conducted using

Mathematica (Wolfram, 1996).

Study 1.1 Gamma model misspeci®ed as normal

Six simulation studies are conducted, each of which is determined by the parameter k in

the model

Y�d�* Gamma�k; l�d�� with E�Y�d�� � kl�d� � e3ÿ dÿ 0:1d2

;

where the shape parameter k is ®xed at 0.25, 0.5, 1.0, 1.5, 2.0 and 4.0. But, the investigator

is unaware of these facts and models the response as

Y�d�*N�m�d�; s2� with m�d� � E�Y�d�� � b0 � b1d � b2d2: �1�
For each of the six models there are ®ve dose groups: a control group �d � 0� and four

treatment or experimental dose groups d1; d2; d3, and d4�d15d25d35d4�. Each of the

experimental dose levels is varied so that it yields the same true risk across the six

experiments. With this set-up, experiment-to-experiment differences can be attributed to

distributional changes as the parameter k changes in the study. We assume that small

response values are adverse and that the background risk in each of the six experiments is

speci®ed as a � 0:05. In addition, each dose group is simulated with ®rst,

5 �ni � 5; N � 25�, then 10 �ni � 10; N � 50�, and ®nally 20 �ni � 20; N � 100�
observations. For reasons of space, coverage probabilities are reported in this paper

only for sample sizes N � 25 and N � 100. Full results, including N � 50, are available in

the technical report on which this paper is based (Banga et al., 1999a). Asymptotic 95%

UCLs in each of the 3 designs of the 6 studies are calculated for 4000 replicates using the

misspeci®ed normal model. The simulated coverage probability in each case is computed

as the proportion of the 4000 simulations for which the resulting UCLs are greater or equal

to the true risk (calculated from the true model). Since the targeted coverage probability is
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95%, the simulation error for the computed coverage has a standard deviation given

approximately as
���������������������������������
0:95�0:05�=4000

p � 0:003 or 0.3% points. Coverage probabilities are

plotted in Figs. 1 and 2.

Study 1.2 Reciprocal gamma model misspeci®ed as normal

The same simulations as in Study 1.1 are carried out. However, the data is generated as

reciprocal gamma, according to the model:

Y�d�* ReciprocalGamma�k; l�d�� with E�1=Y�d�� � kl�d� � e3 � d � 0:1d2;

where the parameter k is ®xed at 0.25, 0.5, 1.0, 1.5, 2.0 and 4.0. The direction of adversity

for Y�d� is to left and the background risk is a � 0:05. Notice that this is the same as a

direction of adversity to the right for the corresponding gamma variates 1/Y�d�. Coverage

probabilities are plotted in Figs. 3 and 4 when the UCLs are calculated using the normal

theory methods.

Study 1.3 Lognormal misspeci®ed as normal

The true model here is

Y�d�* Lognormal�m�d�; s2� with E�log Y�d�� � m�d� � 3ÿ d ÿ 0:1d2;

where the parameter s is ®xed at 0.25, 0.5, 1.0, 1.5, 2.0 and 4.0.

Figure 1. Study 1.1ÐThe normal theory procedures are applied to the gamma models and

the simulated coverage probabilities are plotted against the shape parameter k. The

targeted coverage probability is 0.95. Each experimental dose group consists of 5 animals

so that the total sample size is N � 25.
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Figure 3. Study 1.2ÐSimulated coverage probabilities generated by the application of

the normal theory methods to the reciprocal gamma models plotted against the model

parameter k. The targeted coverage probability is 0.95. Each experimental dose group

consists of 5 animals so that the total sample size is N � 25.

Figure 2. Study 1.1ÐThe normal theory procedures are applied to the gamma models and

the simulated coverage probabilities are plotted against the shape parameter k. The

targeted coverage probability is 0.95. Each experimental dose group consists of 20 animals

so that the total sample size is N � 100.
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Once again the direction of adversity is to the left and the background risk is a � 0:05.

Coverage probabilities are plotted in Figs. 5 and 6 when UCLs are calculated using the

normal theory methods.

5. Sensitivity scenario 2 (log transformed data)

In this scenario, we generate the data from either the gamma or reciprocal gamma

distribution but we analyze the data as if it were lognormal. Equivalently, apply a normal

based analysis to the logarithmically transformed data. The simulations are conducted in

the same set-up as in the ®rst scenario described earlier. Again we examine the effect of

such a misspeci®cation on the simulated coverage probabilities of the UCLs. These are

plotted in Figs. 7 and 8 for the gamma model (Study 2.1) and in Figs. 9 and 10 for the

reciprocal gamma model (Study 2.2).

6. Results and discussion

The simulation results show that the achieved coverage probabilities for the three normal

theory methods are extremely sensitive to departures from normality. The MLE and the

LREL methods yield essentially the same UCLs and coverage probabilities. The LRAL

method, on the other hand, provides UCLs and coverage probabilities that are slightly

Figure 4. Study 1.2ÐSimulated coverage probabilities generated by the application of

the normal theory methods to the reciprocal gamma models plotted against the model

parameter k. The targeted coverage probability is 0.95. Each experimental dose group

consists of 20 animals so that the total sample size is N � 100.
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Figure 6. Study 1.3ÐThe normal theory procedures are applied to the lognormal models

and the simulated coverage probabilities are plotted against the parameter s of the

lognormal model. The targeted coverage probability is 0.95. Each experimental dose

group consists of 20 animals so that the total sample size is N � 100.

Figure 5. Study 1.3ÐThe normal theory procedures are applied to the lognormal models

and the simulated coverage probabilities are plotted against the parameter s of the

lognormal model. The targeted coverage probability is 0.95. Each experimental dose

group consists of 5 animals so that the total sample size is N � 25.
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Figure 7. Study 2.1ÐThe lognormal theory procedures are applied to the gamma models

and the simulated coverage probabilities are plotted against the model parameter k. The

targeted coverage probability is 0.95. Each experimental dose group consists of 5 animals

so that the total sample size is N � 25.

Figure 8. Study 2.1ÐThe lognormal theory procedures are applied to the gamma models

and the simulated coverage probabilities are plotted against the parameter k. The targeted

coverage probability is 0.95. Each experimental dose group consists of 20 animals so that

the total sample size is N � 100.
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Figure 9. Study 2.2ÐSimulated coverage probabilities generated by the application of

the lognormal theory methods to the reciprocal gamma models plotted against the

parameter k. The targeted coverage probability is 0.95. Each experimental dose group

consists of 5 animals so that the total sample size is N � 25.

Figure 10. Study 2.2ÐSimulated coverage probabilities generated by the application of

the lognormal theory methods to the reciprocal gamma models plotted against the

parameter k. The targeted coverage probability is 0.95. Each experimental dose group

consists of 20 animals so that the total sample size is N � 100.
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different for small sample sizes but which quickly converge to those provided by the MLE

and LREL methods as the sample size increases.

In Study 1.1, where the normal theory procedures are applied to the gamma models, the

simulated coverage probabilities are unusually conservative. Further, the overcoverage

becomes more pronounced as the sample size increases (see Figs. 1 and 2). We speculate that

this is due to inconsistency of the normal theory estimators when applied to nonnormal data.

The coverage probabilities are frequently above 0.99 for larger sample sizes. This effect is

somewhat mitigated in Study 2.1 where the same procedures are applied to the logarithmic

transformed gamma data (see Figs. 7 and 8). However, the resulting coverage probabilities

are still highly conservative. In both of these studies, the coverage probabilities approach the

nominal level as the shape parameter k increases. This is not surprising since the gamma

distribution approaches the normal distribution as k??. The performance of the

procedures in Study 1.2 are also adversely affected by the model misspeci®cation.

However, here the simulated coverage probabilities are liberal. These probabilities fall far

below the target coverage as the sample size increases (see Figs. 3 and 4). This pattern is also

observed in Study 2.2 where the same normal theory procedures are applied to the

logarithmic transformed reciprocal data (see Figs. 9 and 10). The procedures perform

slightly better in comparison to Study 1.2, but the simulated coverage probabilities

are still very liberal. In both of these studies (Study 1.2 and Study 2.2), the simulated

coverage probabilities approach the nominal value from below as the shape parameter k
increases.

The simulated coverage probabilities are also excessively liberal when the normal

methods are applied to the lognormal model. Figs. 5 and 6 suggest that for small values of

s (small skewness values) the simulated coverage probabilities are very close to the

nominal level but then fall far below it as s increases.

Interestingly, in all ®ve studies the simulated coverage probabilities of the UCLs at

lower dose levels seem to be only mildly affected by the model misspeci®cation. The

effect of the departures from normality on the simulated coverage probabilities becomes

increasingly severe for higher dose levels.

Finally, we note that the normal theory methods result in overcoverage for the (short-

tailed) gamma distribution, but in undercoverage for the (long-tailed) reciprocal gamma

and lognormal distributions. It would be interesting to characterize those distributions

which give overcoverage versus those which give undercoverage.

The preceding conclusions are also supported by the sample size N � 50, as reported in

Banga et al. (1999b).
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